Pesquisadores do Centro de Energia Nuclear na Agricultura (CENA) e da
Escola Superior de Agricultura Luiz de Queiroz (ESALQ), ambos da Universidade
de São Paulo (USP), desenvolveram uma metodologia baseada em inteligência
artificial que permite automatizar e tornar mais eficiente o processo de
análise da qualidade de sementes – que é exigido por lei e, atualmente, feito
de forma manual por analistas credenciados pelo Ministério da Agricultura,
Pecuária e Abastecimento (MAPA).
O grupo empregou tecnologias baseadas em luz – já usadas em análise de plantas e em áreas como a cosmética – para a aquisição de imagens das sementes. Em seguida, recorreu a técnicas de aprendizagem de máquina para automatizar o processo de interpretação das imagens. Desse modo, foi possível minimizar algumas das dificuldades encontradas nos processos tradicionais. Por exemplo, para muitas espécies, a nova tecnologia pode ser aplicada a todo o lote de sementes e não apenas a amostras, como se faz hoje. Além disso, por não ser invasiva, evita destruir os produtos avaliados e gerar resíduos. Na pesquisa, os cientistas usaram duas tecnologias baseadas em luz para obtenção das imagens, a fluorescência de clorofila e a reflectância multiespectral, utilizando como modelo sementes de tomate e de cenoura produzidas em diferentes países e épocas e submetidas a condições distintas de armazenagem. No caso do tomate, foram utilizados os cultivares comerciais Gaúcho e Tyna, produzidos no Brasil e nos Estados Unidos. Para a cenoura, foram escolhidos os cultivares Brasília e Francine, produzidos no Brasil, Itália e Chile. Leia mais.
O grupo empregou tecnologias baseadas em luz – já usadas em análise de plantas e em áreas como a cosmética – para a aquisição de imagens das sementes. Em seguida, recorreu a técnicas de aprendizagem de máquina para automatizar o processo de interpretação das imagens. Desse modo, foi possível minimizar algumas das dificuldades encontradas nos processos tradicionais. Por exemplo, para muitas espécies, a nova tecnologia pode ser aplicada a todo o lote de sementes e não apenas a amostras, como se faz hoje. Além disso, por não ser invasiva, evita destruir os produtos avaliados e gerar resíduos. Na pesquisa, os cientistas usaram duas tecnologias baseadas em luz para obtenção das imagens, a fluorescência de clorofila e a reflectância multiespectral, utilizando como modelo sementes de tomate e de cenoura produzidas em diferentes países e épocas e submetidas a condições distintas de armazenagem. No caso do tomate, foram utilizados os cultivares comerciais Gaúcho e Tyna, produzidos no Brasil e nos Estados Unidos. Para a cenoura, foram escolhidos os cultivares Brasília e Francine, produzidos no Brasil, Itália e Chile. Leia mais.
Fonte: Agência FAPESP
- 19/02/21