Técnica desenvolvida em um projeto
de pesquisa do Centro de Energia Nuclear na Agricultura (CENA) da USP, em
Piracicaba, permite reduzir o tempo de análise de sementes de soja de uma
semana para poucos segundos. Um equipamento ilumina as sementes com tipos
específicos de luz e produz imagens que são analisadas por algoritmos de
inteligência artificial capazes de classificar o potencial de germinação e o
vigor das sementes, sem necessidade de destruir as amostras testadas.
A ideia do projeto é fazer com que empresas apliquem a técnica no desenvolvimento de equipamentos para programas de controle de qualidade de lotes comerciais de sementes de soja, diminuindo o custo da mão de obra necessária para os testes. Os resultados do trabalho são descritos no artigo Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality, publicado na revista Scientific Reports, do grupo Nature, no último dia 8 de setembro.
As sementes são colocadas em um equipamento dotado de LEDs com vários comprimentos de onda, para iluminação as amostras. “Nas sementes, existem substâncias que se excitam com luz visível ou ultravioleta produzida pelos LEDs e emitem luz de comprimento de de onda mais longo por um breve período de tempo, o que é chamado de autofluorescência”, explica ao Jornal da USP a pesquisadora Clíssia Barboza da Silva, do Cena, coordenadora do projeto. “Essa luz emitida pelas sementes é capturada pelo sensor do equipamento, que a transforma em uma imagem, a qual é analisada por meio de algoritmos de inteligência artificial, que classificam as sements quanto ao vigor, ou seja, a capacidade da semente gerar uma planta jovem normal, tanto em condições favoráveis quanto desfavoráveis.” Saiba mais.
Fonte: Jornal da USP - 22/09/21
A ideia do projeto é fazer com que empresas apliquem a técnica no desenvolvimento de equipamentos para programas de controle de qualidade de lotes comerciais de sementes de soja, diminuindo o custo da mão de obra necessária para os testes. Os resultados do trabalho são descritos no artigo Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality, publicado na revista Scientific Reports, do grupo Nature, no último dia 8 de setembro.
As sementes são colocadas em um equipamento dotado de LEDs com vários comprimentos de onda, para iluminação as amostras. “Nas sementes, existem substâncias que se excitam com luz visível ou ultravioleta produzida pelos LEDs e emitem luz de comprimento de de onda mais longo por um breve período de tempo, o que é chamado de autofluorescência”, explica ao Jornal da USP a pesquisadora Clíssia Barboza da Silva, do Cena, coordenadora do projeto. “Essa luz emitida pelas sementes é capturada pelo sensor do equipamento, que a transforma em uma imagem, a qual é analisada por meio de algoritmos de inteligência artificial, que classificam as sements quanto ao vigor, ou seja, a capacidade da semente gerar uma planta jovem normal, tanto em condições favoráveis quanto desfavoráveis.” Saiba mais.
Fonte: Jornal da USP - 22/09/21